
Transforming Legacy Monolithic Applications into
Microservices with AI Driven Tool

Introduction:

 In the fast-evolving software development landscape, legacy
monolithic applications often pose significant challenges in terms of
scalability, agility, and maintainability. To address these challenges,
we embarked on a project to develop an innovative AI-driven tool
capable of parsing monolithic applications and seamlessly
transforming them into microservices architecture. This case study
delves into the journey of conceptualizing, developing, and
implementing this transformative product.

Client Overview:

 We, a leading software development firm, recognized the pressing
need to enhance the performance of migration and maintenance
processes for legacy applications. With a vision to streamline
software modernization efforts, we initiated the development of a
product aimed at automating the conversion of monolithic
applications into microservices.

Project Overview:

 The project’s core objective was to create an AI-powered tool
capable of parsing monolithic application code and restructuring it
into a microservices architecture. Phase 1 focused on parsing the
code from configured paths, analysing interdependencies between
modules, and segregating them into separate code bases.

+91-9787887699www.freetechcafe.com

Challenges Faced:

 The project’s core objective was to create an AI-powered tool
capable of parsing monolithic application code and restructuring it
into a microservices architecture. Phase 1 focused on parsing the
code from configured paths, analysing interdependencies between
modules, and segregating them into separate code bases.

Proposed Solution:

 To address these challenges systematically, the project team
devised a multi-stage approach. Each stage involved supporting a
specific programming language, architecture, or design pattern in
the code parsing mechanism. Leveraging a combination of open-
source AI models and proprietary ML algorithms, the team aimed to
achieve comprehensive code parsing capabilities.

Technological Stack:

 The entire application was developed using Java Spring Boot for
the backend and Angular for the front end. The project utilized a
variety of open-source AI models for code parsing, supplemented by
custom-built ML models, including neural networks. Notably, the
decision to adopt Neo4j as the database was instrumental in
efficiently storing and querying the complex network of parsed
code modules and their interdependencies.

Key Features and Functionality:

 The AI tool offered a user-friendly interface, allowing developers to
load the source code path for analysis within a click. Upon
execution, the tool meticulously parsed through the code, identified
distinct modules, and established interlinks between them.

 +91-9787887699www.freetechcafe.com

Furthermore, it classified files such as DAOs, DTOs, service classes,
and utilities, facilitating a granular understanding of the application
structure.

Visualization and Data Insights:

 Utilizing Neo4j’s graph database capabilities, the tool provided
visually rich representations of code interdependencies,
empowering developers to gain insights into module relationships.
The ability to visualize past projects’ structures facilitated
knowledge sharing and informed decision-making during software
modernization efforts.

Key Outcomes and Impact:

 The key outcomes of the project, aimed at converting monolithic
applications into microservices, reflect the efficacy and significance
of the developed AI tool in addressing complex challenges within
the software development landscape. Here's an in-depth
elaboration on each key outcome:

1. Parsing Diverse Application Architectures:

 The first significant outcome is the tool's capability to parse
applications built using various technologies and architectural
styles. It parses applications developed with EJB (Enterprise
JavaBeans), Servlet, and Spring frameworks. This versatility
demonstrates the tool's adaptability to different legacy systems,
regardless of the technologies they were built with. The tool proves
its utility across a broad spectrum of legacy applications by
accommodating diverse architectures.

+91-9787887699www.freetechcafe.com

2. Support for MVC-based Applications in C#:

 Another noteworthy achievement is the tool's ability to parse
Model-View-Controller (MVC)- based applications written in C#.
MVC is a widely used architectural pattern in software development,
particularly in the Microsoft ecosystem. By extending its support to
C# MVC applications, the tool ensures that a broader range of legacy
systems can benefit from migrating to microservices architecture.
This capability is crucial for organizations with heterogeneous
technology stacks seeking to modernize their software
infrastructure.

3. Significant Reduction in Migration Timeline:

 One of the project's most compelling outcomes is the substantial
reduction in the timeline required for migrating monolithic
applications to microservices architecture. The tool's efficiency and
automation contribute to a reduction of approximately 60% in the
migration timeline. This dramatic improvement in efficiency
translates to significant cost savings and faster time-to-market for
organizations undergoing digital transformation initiatives. By
streamlining the migration process, the tool enables companies to
swiftly modernize their applications without sacrificing quality or
stability.

4. Enhanced Visualization of Interdependencies:

Another key outcome is the tool's visualization capabilities, which
enable users to comprehend the interlinkages between different
modules and submodules within the existing application easily. By
visualizing the complex dependencies between various
components, the tool empowers developers and architects to make

+91-9787887699www.freetechcafe.com

informed decisions during migration. Identifying modules most
impacted by changes becomes more straightforward, facilitating
risk assessment and ensuring smoother transitions to the
microservices architecture. This enhanced visibility into the
application's structure enhances overall project management and
mitigates potential risks associated with migration.

 5. Seamless Integration with Neo4j Database:

 Leveraging Neo4j as the underlying database for storing parsed
information is a strategic decision that further enhances the tool’s
functionality. Neo4j’s graph database model aligns well with the
inherently interconnected nature of microservices architectures,
making it an ideal choice for storing and querying complex
interdependencies. By utilizing Neo4j, the tool ensures efficient
storage and retrieval of parsed data and enables advanced querying
and analysis capabilities. This integration enhances the tool’s
scalability and performance, efficiently supporting the management
of large-scale migration projects.

Conclusion:

 In conclusion, the development and deployment of the AI-driven
tool marked a significant milestone in streamlining the
modernization of legacy monolithic applications. By leveraging
advanced AI and ML techniques, coupled with a robust
technological stack, the project team successfully addressed the
complex challenges associated with code parsing and migration.
The transformative impact of the tool resonates across the software
development ecosystem, driving efficiency, scalability, and agility in
the pursuit of digital innovation.

+91-9787887699www.freetechcafe.com

